Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Ufuk Çoruh, ${ }^{\text {a* }}$ Reşat Ustabas, ${ }^{\text {b }}$ Ferhan Tümer, ${ }^{\text {c }}$ Santiago García-Granda, ${ }^{\text {d }}$ Ümit Demir, ${ }^{c}$ Duygu Ekinci ${ }^{\text {c }}$ and Metin Yavuz ${ }^{\text {e }}$<br>${ }^{\text {a }}$ The Department of Computer Education and Instructional Tecnology, The Faculty of Education, Ondokuz Mayıs University, Atakum-55200, Samsun, Turkey, ${ }^{\text {b }}$ The Department of Physics, Graduate School of Natural and Applied Sciences, Ondokuz Mayıs University, Kurupelit-55139, Samsun, Turkey,<br>${ }^{\text {c }}$ Department of Chemistry, Art and Science Faculty, Atatürk University, Erzurum, Turkey, dDepartamento de Química Física y Analítica, Universidad de Oviedo, Avda. Julián Clavería 8, 33006 Oviedo, Spain, and ${ }^{\text {e }}$ Department of Physics, Art and Science Faculty, Ondokuz Mayıs University, 55139-Samsun, Turkey<br>Correspondence e-mail: ucoruh@hotmail.com

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
$R$ factor $=0.052$
$w R$ factor $=0.154$
Data-to-parameter ratio $=13.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

# 2-Amino-4-methylthiophene-3-carbonitrile 

The title compound, $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}$, consists of a thiophene ring carrying three substitutent groups. Two $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen bonds link neighboring molecules into a threedimensional network.

## Comment

Highly substituted thiophenes form an important part of numerous natural products (Koike et al., 1997) and pharmaceuticals (World Drug Index, 2000). They are often used as novel conducting polymers and isostatic replacements for phenyl groups in medicinal chemistry (Jarvest et al., 1999). The electronic and optical properties of polythiophene and its derivatives have been the subject of many investigations (Roncali, 1997; Ekinci \& Demir, 2002).

(I)

(II)

The title compound, (II) (Fig. 1), consists of a thiophene ring carrying three subtituents, viz. an amino group, a methyl group and a cyano group. The $\mathrm{S}-\mathrm{C}$ bond lengths, 1.728 (4) and 1.725 (4) $\AA$, are in good agreement with those in the literature, e.g. 1.734 (2) and 1.721 (3) Å (Han \& Choi, 2000), 1.727 (1) and 1.729 (2) $\AA$ (Elerman \& Elmal1, 1998), and 1.723 (2) and 1.735 (3) Å (Wouters et al., 1997). The $\mathrm{C} 1=\mathrm{N} 1$ bond distance is 1.153 (4) $\AA$, typical of such a triple bond. This value agrees well with similar bonds reported in the literature, e.g. 1.132 (2) $\AA$ (Elerman \& Elmalı, 1998), 1.130 (5) and 1.142 (5) $\AA$ (Çoruh et al., 2002), and 1.148 (2) $\AA$ (Boitsov et al., 2002). The molecule of (II) is planar, the maximum deviation from the least-squares plane being 0.0074 (33) $\AA$ for atom C4.

A packing diagram of (II) is shown Fig. 2. The molecules are stacked such that there are no ring-ring or $X-\mathrm{H} \cdots \pi$ interactions between molecules in the stacks; the distance between planes of molecules in the stacks is 5.671 (7) $\AA$. The crystal structure of (II) is stabilized by two $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen bonds (Table 3 and Fig. 2).

## Experimental

2-(2-Bromo-1-methylethylidene)malononitrile ( $0.94 \mathrm{~g}, 5 \mathrm{mmol}$ ) was dissolved in a solution of dioxane ( 5 ml ) and absolute ethanol $(20 \mathrm{ml})$. The stirred solution was cooled to 273 K in an ice-salt bath, and a suspension of $\mathrm{NaSH}(0.3 \mathrm{~g})$ in 10 ml of absolute ethanol was then added dropwise over a period of 30 min . The resulting reaction

Received 30 July 2003
Accepted 7 August 2003
Online 23 August 2003
$\qquad$

## Figure 1



View of the title compound, with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the $50 \%$ probability level.


Figure 2
The hydrogen-bond network in (II), viewed approximately along the [010] direction. Hydrogen bonds are indicated by dashed lines.
mixture was stirred for a further 1 h at room temperature. After removal of the solvent, the residue was filtered on a short $\mathrm{Al}_{2} \mathrm{O}_{3}$ column, eluting with hexane-ethyl acetate (7:3). The solvent was removed and the residue crystallized from chloroform to yield ( $556 \mathrm{mg}, 81 \%$ ) 2-amino-4-methylthiophene-3-carbonitrile (light pink crystals, mp 391-392 K). ${ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 5.59(s, 1 \mathrm{H}$, $\left.\mathrm{H}_{5}\right), 4.81\left(b s, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.11\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 162.44,135.91,115.52,105.32,91.03,15.53$. IR $\left(\mathrm{CHCl}_{3}\right) 3417$, 3212, 3097, 2977, 2202, 1627, 1558, 1446, 1300, 1191, 1068, 836.

## Crystal data

$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}$
$M_{r}=138.20$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=11.900$ (5) А
$b=4.130(5) \AA$
$c=14.085(5) \AA$
$\beta=105.562(5)^{\circ}$
$V=666.9(9)$ A $^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.376 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1153 \\
& \quad \text { reflections } \\
& \theta=1.8-25.2^{\circ} \\
& \mu=0.39 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Block, pink } \\
& 0.20 \times 0.15 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

## Data collection

Nonius KappaCCD diffractometer

## $\varphi$ and $\omega$ scans

Absorption correction: none
1849 measured reflections
1135 independent reflections

$$
\begin{aligned}
& R_{\mathrm{int}}=0.060 \\
& \theta_{\max }=25.2^{\circ} \\
& h=-13 \rightarrow 13 \\
& k=-4 \rightarrow 4 \\
& l=-16 \rightarrow 16
\end{aligned}
$$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
H-atom parameters constrained
$w R\left(F^{2}\right)=0.154$
$S=1.00$
1135 reflections
82 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.087 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.33 \mathrm{e}_{\mathrm{m}}{ }^{-3}$
$\Delta \rho_{\text {max }}=0.33 \mathrm{e}^{-} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.31 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ( $\left({ }^{\circ},{ }^{\circ}\right)$.

| S1-C4 | $1.728(4)$ | $\mathrm{N} 1-\mathrm{C} 1$ | $1.153(4)$ |
| :--- | :---: | :--- | :--- |
| $\mathrm{S} 1-\mathrm{C} 7$ | $1.725(4)$ | $\mathrm{N} 2-\mathrm{C} 4$ | $1.354(5)$ |
|  |  |  |  |
| $\mathrm{C} 4-\mathrm{S} 1-\mathrm{C} 7$ | $91.95(15)$ | $\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 5$ | $110.3(3)$ |
| $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5$ | $179.2(4)$ | $\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5$ | $128.8(3)$ |
| $\mathrm{S} 1-\mathrm{C} 4-\mathrm{N} 2$ | $120.9(2)$ | $\mathrm{S} 1-\mathrm{C} 7-\mathrm{C} 6$ | $112.9(3)$ |

Table 2
Contact distances $\left(\AA^{\circ}{ }^{\circ}\right)$.

| $\mathrm{S} 1 \cdots \mathrm{~N} 1^{\mathrm{i}}$ | $3.401(5)$ | $\mathrm{N} 1 \cdots \mathrm{~N} 2^{\mathrm{ii}}$ | $3.117(6)$ |
| :--- | :--- | :--- | :--- |

Table 3
Hydrogen-bonding geometry ( $\AA,^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{~N}^{\mathrm{i}}$ | 0.86 | 2.48 | $3.276(5)$ | 155 |
| $\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~N}^{\mathrm{ii}}$ | 0.86 | 2.31 | $3.117(6)$ | 157 |

Symmetry codes: (i) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (ii) $1-x,-y, 1-z$; (iii) $x, \frac{1}{2}-y, \frac{1}{2}+z$.

All H atoms were positioned geometrically and refined in riding mode, with methyl $\mathrm{C}-\mathrm{H}=0.96 \AA$, other $\mathrm{C}-\mathrm{H}=0.93 \AA$, and $\mathrm{N}-\mathrm{H}=$ $0.86 \AA$. For methyl $\mathrm{H}, U_{\text {iso }}$ values were set equal to $1.5 U_{\text {eq }}$ of the carrier C atom. For other $\mathrm{N}-\mathrm{H}$ and other $\mathrm{C}-\mathrm{H}, U_{\text {iso }}(\mathrm{H})$ values were set equal to $1.2 U_{\text {eq }}$ of the carrier atom.

Data collection: COLLECT (Nonius BV, 1997-2000); cell refinement: HKL SCALEPACK (Otwinowski \& Minor, 1997); data reduction: HKL DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 1997); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999).

We thank the Spanish MCyT (BQU2000-0219) and FICYT (PR-01-GE-4) for financial support.

## References

Boitsov, S., Songstad, J. \& Törnroos, K. W. (2002). Acta Cryst. C58, o66-o68. Çoruh, U., Akdemir, N., Ağar, E., Vázquez-López, E. M. \& Erdönmez, A. (2002). Acta Cryst. E58, o896-o897.

Ekinci, D., Tümer, F. \& Demir, Ü. (2002). Eur. Polym. J. 38, 1837-1843.
Elerman, Y. \& Elmalı, A. (1998). Acta Cryst. C54, 529-531.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Han, B.-H. \& Choi, M.-G. (2000). Acta Cryst. C56, 1001-1003.

Jarvest, R. L., Pinto, I. L., Ashman, S. M., Dobrowski, C. E., Fernandez, A. V., Jennings, L. J., Lavery, P. \& Tew, D. G. (1999). Bioorg. Med. Chem. Lett. 9, 443-448.
Koike, K., Jia, Z., Nikaido, T., Liu, Y., Zhao, Y. \& Guo, D. (1997). Org. Lett. 1, 197-198.
Nonius BV (1997-2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Roncali, J. (1997). Chem. Rev. 97, 173-205.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1997). PLATON. Utrecht University, The Netherlands.
World Drug Index (2000). Derwent Information. (URL: www.derwent.co. uk)
Wouters, J., Creuven, I., Norberg, B., Evrard, G., Durant, F., Aerschot, A. van \& Herdewijn, P. (1997). Acta Cryst. C53, 892-895.

