Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ufuk Çoruh,^a* Reşat Ustabaş,^b Ferhan Tümer,^c Santiago García-Granda,^d Ümit Demir,^c Duygu Ekinci^c and Metin Yavuz^e

 ^aThe Department of Computer Education and Instructional Tecnology, The Faculty of Education, Ondokuz Mayıs University, Atakum-55200, Samsun, Turkey, ^bThe Department of Physics, Graduate School of Natural and Applied Sciences, Ondokuz Mayıs University, Kurupelit-55139, Samsun, Turkey, ^cDepartment of Chemistry, Art and Science Faculty, Atatürk University, Erzurum, Turkey, ^dDepartamento de Química Física y Analítica, Universidad de Oviedo, Avda. Julián Clavería 8, 33006 Oviedo, Spain, and ^eDepartment of Physics, Art and Science Faculty, Ondokuz Mayıs University, 55139-Samsun, Turkey

Correspondence e-mail: ucoruh@hotmail.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.052 wR factor = 0.154 Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved The title compound, $C_6H_6N_2S$, consists of a thiophene ring carrying three substitutent groups. Two N-H···N intermolecular hydrogen bonds link neighboring molecules into a three-dimensional network.

2-Amino-4-methylthiophene-3-carbonitrile

Received 30 July 2003 Accepted 7 August 2003 Online 23 August 2003

Comment

Highly substituted thiophenes form an important part of numerous natural products (Koike *et al.*, 1997) and pharmaceuticals (World Drug Index, 2000). They are often used as novel conducting polymers and isostatic replacements for phenyl groups in medicinal chemistry (Jarvest *et al.*, 1999). The electronic and optical properties of polythiophene and its derivatives have been the subject of many investigations (Roncali, 1997; Ekinci & Demir, 2002).

The title compound, (II) (Fig. 1), consists of a thiophene ring carrying three subtituents, *viz.* an amino group, a methyl group and a cyano group. The S–C bond lengths, 1.728 (4) and 1.725 (4) Å, are in good agreement with those in the literature, *e.g.* 1.734 (2) and 1.721 (3) Å (Han & Choi, 2000), 1.727 (1) and 1.729 (2) Å (Elerman & Elmali, 1998), and 1.723 (2) and 1.735 (3) Å (Wouters *et al.*, 1997). The C1=N1 bond distance is 1.153 (4) Å, typical of such a triple bond. This value agrees well with similar bonds reported in the literature, *e.g.* 1.132 (2) Å (Elerman & Elmali, 1998), 1.130 (5) and 1.142 (5) Å (Çoruh *et al.*, 2002), and 1.148 (2) Å (Boitsov *et al.*, 2002). The molecule of (II) is planar, the maximum deviation from the least-squares plane being 0.0074 (33) Å for atom C4.

A packing diagram of (II) is shown Fig. 2. The molecules are stacked such that there are no ring-ring or $X-H\cdots\pi$ interactions between molecules in the stacks; the distance between planes of molecules in the stacks is 5.671 (7) Å. The crystal structure of (II) is stabilized by two N-H···N intermolecular hydrogen bonds (Table 3 and Fig. 2).

Experimental

2-(2-Bromo-1-methylethylidene)malononitrile (0.94 g, 5 mmol) was dissolved in a solution of dioxane (5 ml) and absolute ethanol (20 ml). The stirred solution was cooled to 273 K in an ice-salt bath, and a suspension of NaSH (0.3 g) in 10 ml of absolute ethanol was then added dropwise over a period of 30 min. The resulting reaction

Figure 1

View of the title compound, with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Figure 2

The hydrogen-bond network in (II), viewed approximately along the [010] direction. Hydrogen bonds are indicated by dashed lines.

mixture was stirred for a further 1 h at room temperature. After removal of the solvent, the residue was filtered on a short Al₂O₃ column, eluting with hexane–ethyl acetate (7:3). The solvent was removed and the residue crystallized from chloroform to yield (556 mg, 81%) 2-amino-4-methylthiophene-3-carbonitrile (light pink crystals, mp 391–392 K). ¹H NMR (200 MHz, CDCl₃): δ 5.59 (*s*, 1H, H₅), 4.81 (*bs*, 2H, NH₂), 2.11 (*s*, 3H, CH₃); ¹³C NMR (50 MHz, CDCl₃) δ 162.44, 135.91, 115.52, 105.32, 91.03, 15.53. IR (CHCl₃) 3417, 3212, 3097, 2977, 2202, 1627, 1558, 1446, 1300, 1191, 1068, 836.

Crystal data

$C_6H_6N_2S$	$D_x = 1.376 \text{ Mg m}^{-3}$
$M_r = 138.20$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 1153
a = 11.900 (5) Å	reflections
b = 4.130(5)Å	$\theta = 1.8-25.2^{\circ}$
c = 14.085(5) Å	$\mu = 0.39 \text{ mm}^{-1}$
$\beta = 105.562 \ (5)^{\circ}$	T = 293 K
$V = 666.9 (9) Å^3$	Block, pink
Z = 4	$0.20 \times 0.15 \times 0.10 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer	$R_{\rm int} = 0.060$
φ and ω scans	$\theta_{\rm max} = 25.2^{\circ}$
Absorption correction: none	$h = -13 \rightarrow 13$
1849 measured reflections	$ \begin{array}{l} n = -15 \rightarrow 15 \\ k = -4 \rightarrow 4 \end{array} $
1049 measured renections	$\kappa = -4 \rightarrow 4$

 $l = -16 \rightarrow 16$

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.052$	$w = 1/[\sigma^2(F_o^2) + (0.087P)^2]$
$wR(F^2) = 0.154$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
1135 reflections	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
82 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, $^{\circ}$).

S1-C4	1.728 (4)	N1-C1	1.153 (4)
S1-C7	1.725 (4)	N2-C4	1.354 (5)
C4-S1-C7	91.95 (15)	S1-C4-C5	110.3 (3)
N1-C1-C5	179.2 (4)	N2-C4-C5	128.8 (3)
S1-C4-N2	120.9 (2)	S1-C7-C6	112.9 (3)

Table 2

Contact distances (Å, °).

$S1 \cdots N1^i$	3.401 (5)	$N1 \cdots N2^{ii}$	3.117 (6)

Table 3

Hydrogen-bonding	geometry ([A, °]).
------------------	------------	--------	----

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$

Symmetry codes: (i) $x, \frac{1}{2} - y, z - \frac{1}{2}$; (ii) 1 - x, -y, 1 - z; (iii) $x, \frac{1}{2} - y, \frac{1}{2} + z$.

All H atoms were positioned geometrically and refined in riding mode, with methyl C–H = 0.96 Å, other C–H = 0.93 Å, and N–H = 0.86 Å. For methyl H, $U_{\rm iso}$ values were set equal to $1.5U_{\rm eq}$ of the carrier C atom. For other N–H and other C–H, $U_{\rm iso}$ (H) values were set equal to $1.2U_{\rm eq}$ of the carrier atom.

Data collection: *COLLECT* (Nonius BV, 1997–2000); cell refinement: *HKL SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *HKL DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 1997); software used to prepare material for publication: *SHELXL97* and *WinGX* (Farrugia, 1999).

We thank the Spanish MCyT (BQU2000-0219) and FICYT (PR-01-GE-4) for financial support.

References

Boitsov, S., Songstad, J. & Törnroos, K. W. (2002). Acta Cryst. C58, o66–o68.
Çoruh, U., Akdemir, N., Ağar, E., Vázquez-López, E. M. & Erdönmez, A. (2002). Acta Cryst. E58, o896–o897.
Ekinci, D., Tümer, F. & Demir, Ü. (2002). Eur. Polym. J. 38, 1837–1843.
Elerman, Y. & Elmalı, A. (1998). Acta Cryst. C54, 529–531.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
Han, B.-H. & Choi, M.-G. (2000). Acta Cryst. C56, 1001–1003.

1135 independent reflections

789 reflections with $I > 2\sigma(I)$

- Jarvest, R. L., Pinto, I. L., Ashman, S. M., Dobrowski, C. E., Fernandez, A. V., Jennings, L. J., Lavery, P. & Tew, D. G. (1999). *Bioorg. Med. Chem. Lett.* 9, 443–448.
- Koike, K., Jia, Z., Nikaido, T., Liu, Y., Zhao, Y. & Guo, D. (1997). Org. Lett. 1, 197–198.
- Nonius BV (1997-2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Roncali, J. (1997). Chem. Rev. 97, 173-205.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (1997). PLATON. Utrecht University, The Netherlands.
- World Drug Index (2000). Derwent Information. (URL: www.derwent.co. uk)
- Wouters, J., Creuven, I., Norberg, B., Evrard, G., Durant, F., Aerschot, A. van & Herdewijn, P. (1997). Acta Cryst. C53, 892–895.